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Abstract. A fixed point theorem in three metric spaces is proved. This result
extends the results obtained in [3] from two metric spaces to three metric spaces. It
generalizes the results obtained in [6,7,8]. A several corollaries are obtained according as
the forms of implicit functions.

1. Introduction

In [6], [7] and [3] the following theorems are proved:
Theorem 1 (Nung) [6] Let (X,d),(Y,p) and (Z,0) be complete metric spaces

and suppose T is a continuous mapping of X into ¥, S is a continuous mapping of Y
into Z and R is a continuous mapping of Z into X satisfying the inequalities
d(RSTx, RSy) < cmax{d(x, RSy),d(x, RSTx), p(y,Tx),o(Sy,STx)}
p(TRSy,TRz) < cmax{p(y,TRz), p(y,TRSy),0(z,Sy),d(Rz, RSy)}
o (STRz, STx) < cmax{c(z,8Tx),0(z,STRz),d(x, Rz), p(Ix,TRz)}
forall xin X, y in ¥ and z in Z, where 0<c<1. Then RST has a unique fixed

point  in X, TRS has a unique fixed point v in ¥ and STR has a unique fixed point
w in Z . Further, Tu=v,Sv=w and Rw=u.

Theorem 2 (Jain et.al)[7] Let (X,d),(Y,p) and (Z,0) be complete metric
spaces and suppose T is a mapping of X into Y, S is a mapping of Y into Z and R is
a mapping of 7 into X satisfying the inequalities

d*(RSy,RSTx) < cmax {d(x,RSy)p(y,Tx), p(y,Tx)d(x, RSTx),
d(x, RSTx)o (Sy,STx),c(Sy, STx)d (x, RSy)}

P (TRz,TRSy) < cmax {p(y,TRz)o(z,5y),0(z,Sy)p(y,TRSy),
p(y,TRSy)d(Rz, RSy),d(Rz, RSy)p(y,TRz)}

o*(STx,STRz) < cmax {o(z,STx)d(x,Rz),d(x,Rz)o(z,5TRz),
o (z,STRZ)p(Tx,TRz), p(Tx,TR7)c (2, STx)}



forall xin X, y in ¥ and z in Z, where 0<c<1. If one of the mappings R,S,T is

continuous, then RST has a unique fixed point # in X , 7RS has a unique fixed point v
in ¥ and STR has a unique fixed point w in Z . Further, Tu =v,Sv=w and Rw=u.

Theorem 3 (NeSic )[3] Let (X,d) and (Y,p) be complete metric spaces. Let T
be a mapping of X into Y and S amapping of Y inio X . Denote

M, (x,y)={d"(x,5),p" (3. Tx), p" (3, T5y)}
and
M, (x,y) = {p" (3,Tx),d” (x,5y),d” (x,5Tx)}
forall xin X, y in¥ and p=1,2,3,....
Let R* be the set of nonnegaﬁve real numbers, and let F,:R* —> R” be a mapping
such that F,(0)=0 and F, is continuous at 0 for i=1,2.
If T and S satisfying the inequalities
p"(Tx,TSy) < ¢, max M (x, y)+ F(min M, (x, y)),
d”(Sy,STx) < ¢, max M, (x, y)+ F,(min M, (x, y)),
forall x in X and y in ¥, where 0<¢,,c, <1, then ST has a unique fixed point z in
X and TS has a unique fixed point w in ¥ . Further, 7z=w and Sw=z.

2. Main results

We will prove a theorem which generalizes the Theorems Nung [6], Jain,
Shrivastava and Fisher [7], NeSic' [3] and extends the Theorem Ne§ic' from two to
three metric spaces. For this, we will use the implicit functions.

Let @Y be the set of continuous functions with 4 variables

@ :[0,+0)" — [0,+00)
satisfying the properties:
@ is non descending in respect with each variable.
p(t,t,t,0)<t" ,me N.

Denote I, ={1,2,3,4}.
Some examples of such functions are as follows:

Example 4 ¢(t,,1,,1,,1,) = max{t,t,,4,,4,}, with m=1.
Example 5 ¢(1,,1,,1,,1,) = max{tg; :i, je I}, with m=2.

Example 6 ¢(1,,1,,1,,1,) = max{tt,, t,t,, 1,1, L, }, with m=2.



Example 7 ¢(t,,t,,t;,t,) = max{t 1] .t ,t] }, with m=p.

Let ¥, be the set of continuous functions with 4 variables
y :[0,+00)" —>[0,+e0)

satisfying the property
bt =0 w5, 0,.8,)=0.

Example 8
Wit ty,t,0,) = min{z,,t,,1;, 4, }

e tatt,) = minft 4. B )

w(t,t,,b,t,) = min{t] 1] 1] 1]}, etc.

Let F be the set of continuous functions
I :[0,+00) = [0, +c0)

with F(0)=0 (For example F(r)=t“,k>0).

Theorem 9 Let (X,d),(Y,p) and (Z,0) be complete metric spaces and suppose

T is a mapping of X into Y, S is a mapping of Y into Z and R is a mapping of Z
into X, such that at least one of them is a continuous mapping. Let

pe M yw.eV¥, FeF for i=1,23. If there exists ge [0,1) and the following
inequalities hold
(H d" (RSy,RSTx) < g¢,(d(x,RSy),d(x, RSTx), p(y,Tx),o(Sy, STx))+
+ F (w,(d(x,RSy), d(x, RSTx), p(,T%),0(Sy, STX)).
2) p™ (TRz, TRSy) < q9,(p(,TR2), p(y,TRSy), (2, 5y), d(Rz, RSy)) +
+ F, (pr,(p (3, TR2), p(y.TRSY), 0 (2, Sy), d(Rz, RSYy)).
3) o™ (8Tx,STRz) < qp,(o(z,8Tx),0(z,5TRz),d(x, Rz), p(Ix,TRz))+
+ Fy(w;(0(2,5Tx),0(z, STRz), d(x, Rz), p(Tx,TRz))
forall xe X,ye Y and ze Z, then RST has a unique fixed point ¢ X , TRS
has a unique fixed point fe ¥ and STR has a unique fixed point y € Z . Further,

Ta=4,S8=y and Ry=a .
Let x,€ X be an arbitrary point. We define the sequences (x,),(y,) and (z,) in

X.,Y and Z respectively as follows:
x, = (RST)' 3,5, =Tx, 1,2, = Sy,,n=1,2,...

Denote
du = d(xn’xn-!-!)’pn . p(yn" yn+1)’0n = O-(Zn’ zn+l)’ n= 1’2"“

By the inequality (2), for y=1y, and z=2,, we get:



pm(yn’ y:a+l) S quE(p(yn’ yn)’p(yn’ y:xé—\)’g(zrh]’Zn)’d(xn—!’xn))+

+F, 0, (00, 2,05 PO Yot 02,152, A%, 45 X,)-
or
Py < 49,0,0,,0,,.d, )+ EW,0,p,,0,.4, d, )=
= 99,(0.9,,0,.1-4,,) )
For the coordinates of the point (0,p,.0, ,,d, ;) we have:
p, <max{d, _,,o, },¥Yne N (5)
because, in case that p, >max{d, ,o,,} for some 7, if we replace the
coordinates with p, and apply the property (b) of @, we get:
P S GPy (0,2 P s £0) < AP -
This is impossible since 0< g < 1.
By the inequalities (4), (5) and properties of ¢, we get:
pr < qp,(max{d, 0, },max{d, o0, },max{d, .o, },max{d, .0, D=
£ gmax{d] 0.}
Thus
o % {‘/5 max{d,_,,o,,} (6)

By the inequality (4), for x=1x,_, and z =z, we get:
O-m (Zn ’ Zn-i-l) = quS(o-(zn ? Zn)"o_(zn ’ zn-{-[)’ d(xnfl’ xn)’p(-yn 3 yn+l )) +
R Ao (z,02 002 % 1 0E 1 X 2T Fpy I

or
O-r"" S q¢3(0’azr’dr1—l’pu)+F3(0) =

= s (0’ Oy» dnvl ’pn) (7)

In similar way, we get:
ol < gmax{d) ,p,},Vne N.

By this inequality and (6) we get:
o, <tfqmax{d, ,,0,,},Yne N (8)

By (1) for x=x, and y=y, we get:
d’f“ ('xu’xuﬂ) S qtpl (d(xn"xn)’d(xn’xnﬂ)’p(yn’ yn+] )70-('211’ ‘Zn+1 ))+

+F(w, (d(x,,%,0,d (%, %, P Vs Vo1 1s0 (2,5 2,1 )))
or
ar < qp,(0.d,,p,.0,)+F(0)=

= qqgl (0‘-‘ dr:’pn’an) (9)



For the same reasons we used to (5), for the coordinates of the point (0,d,,p,.0,)

we have:
d <max{p,,o0,},Vne N.

Applying to (9) the properties of ¢, and the inequalities (6), (8) we get:
d, £ %max{pn,an 1< da({ﬁ max{d, ,c,,})=
= ;{r/—q_(.r{/a‘) max {dn—l "O.n—l } = Q/E max{dn—l 1 O-n—l }

or
d < {Emax{d,l_l,cf,,ul} (10)

By the inequalities (6), (8) and (10), using the mathematical induction, we get:
d(x,,x,,) < " max{d(x,x,),0(z,2,)}
P(Vs Vo) < 77 max{d(x;, %,),0(%,2,)}
o(z,,2,,,) < " max{d(x,x,),0(z,2,)}
wherea’/a 2 e o
Thus the sequences (x,),(y,) and (z,) are Cauchy sequences. Since the metric
spaces (X,d),(Y,p) and (Z,0) are complete metric spaces we have:
limx, =€ X,lir)ﬂyn =pfe Y,li_r}gzn =yeZ.

n—ro

Assume that S is a continuous mapping. Then by

lim Sy, =limz,.
it follows
Sp=y. (A1

By (1), for y=/4 and x=x, we gel:
d" (RSB, %) < @, (d(x,. RS B),d(%,,%,01): (B V)0 (7. SEN+
+F, (,(d(x,,RS3),d (x,, %,,,): P(B Y1) (¥, S F)))-

By this inequality and (11) we get:
d'” (RS‘B,)C“H) = QQ'?; (d(xn 2 RSﬂ)’ d(xn ? xu+! }’p(ﬁ’ yn+1)’ 0) +
+F(0).

Letting n tend to infinity, we get
d™(RSPB.,@) < qp,(d(RSB,a),0,0,0) < qd" (RSP, cx)

or
d(RSB,a) =0 RSB =a. (12)

By (2), for z=Sf and y=y, we get:



P (TRSB,y,.,) < q0,(p(y,, TRSB), p(¥,> Y, -0 (8B, 2,),d(x,, RSSF)) +
+F, (W, (0(3,.TRS ), p(¥,s Yuur 0 (8B, 2,),d(x,, RS 3))).

Letting » tend to infinity and using (11), (12) we get:
p"(TRSS.B) < qp,(p(B.TRS3),0,0,0)+ F(0) .

or
o™ (TRSB,B) < gp™(B,TRSB) = TRSf = . (13)

By (11), (12) and (13) it follows:
TRSB=TRy=Tax=p
STRy = STa =88 =y
RSTa = RSf=fBy=c

Thus, we proved that the points «,f,y are fixed points of RST,7RS and STR

respectively.
In the same conclusion we would arrive if one of the mappings R or 7' would be

continuous.
Let we prove now the iniquity of the fixed points «, 8 and y.

Assume that there is @' a fixed point of RST different from « .
By (1) for x=¢' and y=Ta we get.
d"(a.a") = d"(RSTa,RSTa ) <
< g, (d(¢' ,RSTa),d(c ,RSTa"), p(Te,Te' ), (STar, STa')) +
+F (y,(d(e ,RSTa),d(e , RSTa), p(Tee, Tt ), o (ST, STa')) =
= gp,(d(@,@),0,pTa,Ta’),o(STa,STa')+ F(0) <
< gmax{d"(&',a),p" Ta,Ta"),c” ($Ta,STa')}
or
d"(a,a')=qgmax A (14)
where A={d"({a',a);p"(Ta,Ta');o™(STa,5Tca')} .
We distinguish the following three cases:
Case I: If max A=d"(a',a), then the inequality (14) implies
d™(a, )< gd" (@, a)=>ad =a.

Case II: If max A = p"(Ta,Ta’), then the inequality (14) implies
d"(a,a') < qp" (Ta,Ta’) (15)

Continuing our argumentation for the Case 2, by 2) for z=8Ta and y=Ta' we
have:



p"(Ta,Ta') = p"(TRSTa, TRSTa') <

< gqo,(p(Te! ,TRSTa),p(Te', TRSTa'),o(STa,STe’), d(RSTa', RSTax))
+F,(w, (p(Te! , TRSTQ), p(Te , TRSTe! ), 0 (STex, ST ), d(RSTed', RST ) =
= gp,(p(Ta' . Ta),0,0(5Ta,STa'), d, (a, )+ F(0)=

< gmax A (16)

Since in Case I, max A= p" (T, Ta'), by (16) it follows

o"(Ta,Ta)< qp" (Ta,Ta')
or

pTa,Ta')=0.

By (15), it follows d(a,a’)=0.
Case IIL: If max A =c"(8Ta,STa'), then by (14) it follows
d™(e,a’)< qo" (STe,STa’) (17)

By the inequality (3), for x=RSTa,z=3S Tea' , in similar way we obtain:
o™(STa,STa') < qmax A = go™ (8T, STa'")

It follows
oS8T, STa')=0
and by (17) it follows
dig.a’)y=0.

Thus, we have again ¢ =a' .
In the same way, it is proved the nicety of g and y.

We emphasize the fact that it is necessary the continuity of at least one of the
mappings T,S and R. The following example shows this.

Example 10 Let X =Y =Z = [0,1};d = p = o such that
d(x,y)=lx—yl,Vx,ye [0,1]. We consider the mappings T,S,R :[0,11— [0,1] such that

1 for x=0

T RyeSo=y y
!6 for xe (0,1]

We have



{lforx:()
STx=RSx=TRx =142

lti v xe(0,1]

and

[l for x=0
RSTx =TRSx = STRx =4 *

lfg_ for xe (0,1]

We observe that the inequalities (1), (2) and (3) are satisfied for

: 1
P, =0, =p,=pc ®F with p(,,1,,t;,2,) = max{t,t,,1,,%,}, where g=— and F=0.1It

can be seen that none of the mappings RST,TRS,STR has a fixed point. This is because
none of the mappings T, R, S is a continuous mapping.

3. Corollaries

Corollary 3.1 Let (X,d),(Y,p) and (Z,0) be complete metric spaces and
suppose T is a mapping of X into Y, S is a mapping of Y into Z and R is a mapping
of Z into X , such that at least one of them is a continuous mapping. Let
F :[0,+0) = [0,4+0) be continuous with F(0) =0. If there exists q< [0,1) and me N
such that the following inequalities hold

(D d™ (RSy, RSTx) < gmax(d(x, RSy),d(x,RSTx), p(y,1x),c(Sy, STx))+
+ F,(min(d (x, RSy), d(x, RSTx), p (3, Tx), 5 (Sy, STx)).
@ p" (TRz,TRSy) < gmax(p(y,TRz), p(y,TRSy),0(2,S5y),d(Rz, RSy)) +
+ F,(min(p(y,TRz), p(y,TRSy),c (2, 5y), d(Rz, RSy)).
(3)

o™ (8Tx,STRz) < gmax(o(z,5Tx),0(z,STRz),d (x,Rz),p(Tx,TRz)) +
+ F,(min(o (z,8Tx),0(z,5TRz),d(x, Rz), p(Tx,TRZ))

forallxe X,ye Y and ze Z, then RST has a unique fixed point e X , TRS hasa
unique fixed point fe Y and STR has a unique fixed point ye Z . Further,
Ta=4,Sf=y and Ry=a .

The proof follows by Theorem 2.6 in the case
E=F,=F,=F,p,=¢,=¢, =pe ®” such that ¢(t,,1,,1,,1,) = max{t",2;",1;",2;'} and
W, =W, =y, =y, where y(t.1,.1,,1,) =min{",2;,1,1,' }.



Corollary 3.1 extends Theorem 1.3 (NeSic’ [3]) from two in three metric spaces.

Corollary 3.2 Theorem 1.1 (Nung [6]) is taken by Corollary 3.1 for m=1 and
F=0,

Corollary 3.3 Theorem 1.2 (Jain et. al. [7]) is taken by Theorem 2.6 in case
FE=FE=F=0p=0,=0,=pc 0 such that ¢(t,,1,,t,,1,) = max{t,t;, 1,1, 6,4, 1,1, }.

Cerollary 3.4 Theorem Kikina (Theorem 2.1, [8]) is taken by Corollary 3.1 in
case @(t,,1,,1,,t,) =max{y",t; &'} and WAL tate by =004 0 i b

Corollary 3.5 Let (X,d),(Y,p) be complete metric spaces and suppose T is a
mapping of X into Y, S isamapping of Y into Z. p,€ ®,,F,e F for i=1,2. If there
exists ge [0,1) such that the following inequalities hold

() d(8y,8Tx) < g, (d(x,8y),d(x,5Tx}, p(y,Tx)) +
+ F (y,(d(x,Sy),d (x, STx), p(y,Tx)).

@) pT(TxTSy) < qp,(p(3,7%), p(3,15Y),d (x, Sy)) +
o+ Fl ('//2 (P(}’v Tx):p(yaTSy)s d(JC, SJ’))

forall xe X,ye Y, then ST has a unique fixed point ¢ X and 7 hasa
unique fixed point fe Y. Further, Ta = 5,58 =y .

By Theorem 2.6, if we take: Z = X,0 =d the mapping R as the identity mapping
in X, 0,(t,5.5.8,)=@,(,6,,5,),w,(t,1,,15,8,) =, (t.1,,5) , then the inequality (1) takes
the form (1), the inequality (2) takes the form (2') and the inequality (3) is always
satisfied since his left side is o™ (STx, STx) = 0. Thus, the satisfying of the conditions (1),
(2) and (3) is reduced in satisfying of the conditions (1") and (2').

The mappings 7 and S may be not continuous, while fromt he mappings T,S and

R for which we applied Theorem 2.6, the identity mapping R is continuous. This
completes the proof.
We have the following corollary.

Corollary 3.6 (Theorem Nesic' [3]). Theorem 1.3 is taken by Corollary 3.5 for
3

P =@, =@, =W, =W such that gai(t’,tg,t3) = max{tf’,t;',t } and
w(t,1,,5) = min{s", 17,4}

We emphasize the fact that in the Theorem 1.3, the mappings F and F, can be
replaced by F(¢) = max{F,(¢), F,(t)} and c,c, can be replaced by g = max{c,c,}.

Corollary 3.7 Theorem Popa (Theorem 2, [2]) is taken by Corollary 3.5 for



©, =@, =@ such that ¢(t,,t,,t,) = max{ft,,41,, 5,0} with m=2 and F =0,

We also emphasize here that the constants ¢, ¢, can be replaced by ¢ = max{¢,,c,}.

Remark. As corollaries of these results we can obtain other propositions
determined by the form of implicit functions, for example Proposition Popa (Corollary 2,
[2]), Theorem Fisher (Theorem 1, [1]) etc.
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